设函数f(x)=√[2-(x+3)/(x+1)]的定义域为A,g(x)=㏒[(x-a-1)(2a-x)](a<1)的定义域为B,若B∈A,求实数a的取值范围f(x)=√[2-(x+3)/(x+1)]=√[(x-1)/(x+1)]--->A = {x|(x-1)(x+1)≥0} = (-∞,-1)∪[1,+∞)∵a<1--->B = {x|(x-a-1)(2a-x)>0} = (2 展开
设函数f(x)=√[2-(x+3)/(x+1)]的定义域为A,g(x)=㏒[(x-a-1)(2a-x)](a<1)的定义域为B,若B∈A,求实数a的取值范围f(x)=√[2-(x+3)/(x+1)]=√[(x-1)/(x+1)]--->A = {x|(x-1)(x+1)≥0} = (-∞,-1)∪[1,+∞)∵a<1--->B = {x|(x-a-1)(2a-x)>0} = (2a,a+1)B∈A--->a+1≤-1或2a≥1--->a≤-2或a≥1/2 收起