解:由题意,不妨设正方形边长为a则菱形边长=AC=√2a且AC//BF,AC为角平分线所以∠CAB=∠CBF=45度在三角形ABE中,∠ABE=90+45=135度,∠EAB+∠AEB=45度AE=√2a由正弦定理:AE/sin∠ABE=AB/sin∠AEB√2a/(1/√2)=a/sin∠AFB所以sin∠AFB=1/2因为0<∠AFB<45度,所以∠AFB=30度AC//EF,所以 展开
解:由题意,不妨设正方形边长为a则菱形边长=AC=√2a且AC//BF,AC为角平分线所以∠CAB=∠CBF=45度在三角形ABE中,∠ABE=90+45=135度,∠EAB+∠AEB=45度AE=√2a由正弦定理:AE/sin∠ABE=AB/sin∠AEB√2a/(1/√2)=a/sin∠AFB所以sin∠AFB=1/2因为0<∠AFB<45度,所以∠AFB=30度AC//EF,所以∠CAE=∠AEB=30度直角三角形AEH中,∠AHE=90度,∠AEH=30度所以EH=AE/2=FC/2 收起