x^2+y^2-2(t+3)x+2(1-4t)y+16t^2+9=0? ? ?--->(x-t-2)^2+(y-1+4t^2)=(t+3)^2+(1-4t)^2-16t^2-9--->[x-(t+2)]^2+[y-(1-4t^2)]^2=t^2-2t+11)为使方程表示一个圆,应有t^2-2t+1>0--->(t-1)^2>0--->t<>12)由于 展开
x^2+y^2-2(t+3)x+2(1-4t)y+16t^2+9=0? ? ?--->(x-t-2)^2+(y-1+4t^2)=(t+3)^2+(1-4t)^2-16t^2-9--->[x-(t+2)]^2+[y-(1-4t^2)]^2=t^2-2t+11)为使方程表示一个圆,应有t^2-2t+1>0--->(t-1)^2>0--->t<>12)由于r=(t-1)^2>0,所以半径r是任意正实数 收起