已知abc为正实数,a,b,c的和是1,求证: (1)(1/a +1)(1/b +1 )(1/c +1)大于等于64 (2) ( 1/a -1)(1/b -1 )(1/c -1)大于等于8证明 己知a+b+c=1,求证:(1+1/a)*(1+1/b)*(1+1/c)≥64 (1)(1)<==>[(2a+b+c)/a]*[(2b+c+a)/b]*[(2c+a+b)/c]≥64 展开
已知abc为正实数,a,b,c的和是1,求证: (1)(1/a +1)(1/b +1 )(1/c +1)大于等于64 (2) ( 1/a -1)(1/b -1 )(1/c -1)大于等于8证明 己知a+b+c=1,求证:(1+1/a)*(1+1/b)*(1+1/c)≥64 (1)(1)<==>[(2a+b+c)/a]*[(2b+c+a)/b]*[(2c+a+b)/c]≥64 (2)<==>(2a+b+c)*(2b+c+a)*(2c+a+b)≥64abc (3)由均值不等式得:2a+b+c≥4*(a*a*b*c)^(1/4) (4-1)2b+c+a≥4*(b*b*c*a)^(1/4) (4-2)2c+a+b≥4*(c*c*a*b)^(1/4) (4-3)(4-1)*(4-2)*(4-3)即得(3)式,得证.己知a+b+c=1,求证:(-1+1/a)*(-1+1/b)*(-1+1/c)≥8 (5)(1)<==>[(b+c)/a]*[(c+a)/b]*[(a+b)/c]≥8 (6)<==>(b+c)*(c+a)*(a+b)≥8abc (7)由均值不等式得:b+c≥2*(b*c)^(1/2) (8-1)c+a≥2*(c*a)^(1/2) (8-2)a+b≥2*(a*b)^(1/2) (8-3)(8-1)*(8-2)*(8-3)即得(7)式,得证. 收起