外磁场很小,并且磁化过程是可逆的。对1区有B=μiH。μi 为起始磁导率。显然是线性的。对输出功率不大、频率不高的电源变压器,可以极为精确的计算工作时的B值。在2区有B=μiH+bH2。其中b为瑞利常数。这个区已经不是线性的了。但磁化过程仍然可逆。通常针对这两个区,在工程应用上我们仍然取近似公式:B=μiH。由于可逆,故正激变换器几乎没有磁滞(实际上由于工艺等原因,仍然存在 展开
外磁场很小,并且磁化过程是可逆的。对1区有B=μiH。μi 为起始磁导率。显然是线性的。对输出功率不大、频率不高的电源变压器,可以极为精确的计算工作时的B值。在2区有B=μiH+bH2。其中b为瑞利常数。这个区已经不是线性的了。但磁化过程仍然可逆。通常针对这两个区,在工程应用上我们仍然取近似公式:B=μiH。由于可逆,故正激变换器几乎没有磁滞(实际上由于工艺等原因,仍然存在不可逆磁化,仍有磁滞,只不过比较小)。对于输入输出相同的电源,若分别采用正激和反激拓扑,只要工作频率相同,正激变压器的效率一定高于反激变压器。对于反激变压器而言,其工作区域是1、2、3区。其中3区属于不可逆磁化区,这个区域是磁滞的主要形成区,故反激变压器定有磁滞损耗的成分。它是工作在中等磁场范围内,此时当磁场的变化范围很小时,B的变化十分显著,其磁导率迅速增大并达到最大值,这个区也是最大磁导率区。显然1、2、3各区的磁导率并不相等。但在变压器的参数计算时,我们采用公式B=μe H。其中μe为有效磁导率,使将1、2、3中的B---H曲线等效为一根直线得出的B和H的比值。需要说明的是这个式子适应于以DCM方式工作的反激变换器。以CCM方式工作的反激变换器,精确的计算须使用增量磁导率。正激变换器中的储能电感的计算同样要考虑DCM方式使用μe,CCM方式使用增量磁导率 收起