1.a,b>0,则a+b≥2√ab满足ab=a+b+3≥2√ab+3(√ab-3)(√ab+1)≥0因为√ab>0,√ab+1>0,所以√ab≥3,ab≥9a+b=ab-3≥9-3=6a+b的取值范围为[6,+∞)2.b>a>0,m>0,则(a+m)/(b+m)>a/b即“糖水不等式”证:因为a>b>0,所以a/b>0由b>0,m& 展开
1.a,b>0,则a+b≥2√ab满足ab=a+b+3≥2√ab+3(√ab-3)(√ab+1)≥0因为√ab>0,√ab+1>0,所以√ab≥3,ab≥9a+b=ab-3≥9-3=6a+b的取值范围为[6,+∞)2.b>a>0,m>0,则(a+m)/(b+m)>a/b即“糖水不等式”证:因为a>b>0,所以a/b>0由b>0,m>0所以bm>ambm+ab>am+ab(a+m)b>a(b+m)因为b+m>0,b>0所以(a+m)/(b+m)>a/b 收起